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1. Introduction 
 
Some aspects of power law distributions are analysed. First section 
investigates  the loss of continuity we observe in the experimental 
counterpart of power law function fit. The observed facts usually 
analysed with power law models often show a noteworthy change in the 
measure scale. Furthermore it’s quite this measure scale change which is 
invoked as the testing bench of power law based models efficiency. The 
most quoted examples are: city sizes, incomes, word frequencies, 
earthquake magnitudes and others alike. In this section we introduce the 
idea that the scale change it’s indicative of a real change, that is a 
qualitative change in observed facts. Here we give also some hints to 
recognize this problem as a measure problem.  
Second section is charged to give some examples of the problems that 
arise when applying power law functions to real facts: we do this using 
city sizes analysis. The analysis is applied on Italian city sizes data 
collected in two different periods: 1996 an 2001. In this section we will 
see that is not problem free describing city size distribution with Zipf 
law. 
Third section presents a method to separate observations that are 
responsible for the change in measuring scale we introduced in section 
one. Using the samples showed in section two, a simple analytic method 
will be presented, based on an elementary linear equations system.  
Fourth section applies the findings of section three to a real problem. 
Applying the formulas given in section three the insurance best 
performing  agencies are singled out by insured risk revenue. 

2. The problem 
 
As it is well known Pareto distribution pertains to the wider range of 
power law distribution functions1. Pareto (1848-1923)2 was interested in 
picturing the asymmetry of the revenue distribution among people. 
Reference is often made to Pareto cumulative distribut ion function as 
the law of 20%-80%: the minority of population (20%) possesses the 
majority of the total country revenue (80%).  Despite the simplicity of 
the statement and the obviousness of the interpretation and, I would say, 

                                        
1 Cfr. Lada A. Adamic, Zipf, Power-laws and Pareto – a ranking tutorial, for a short 
description of this point of view 
2 For a description of Pareto life and work see for instance  the following address 
http://cepa.newschool.edu/het/profiles/pareto.htm 
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the unpleasant fact, I will report some simple numerical examples 
showing some particular aspects of Pareto distributions, and more 
generally of power law functions. 
The data of the example are invented and are reported in tab. 1: 
Tab. 1 – Input data of Pareto distribution example sorted in descending order 

 Fig. 1 – Pareto Concentration Curve from data in  Table 1 
 

 
The data in the table are chosen in such a way that they form a Pareto 
distribution, as is shown in the graph on fig. 1. 
The y-axis reports the cumulative proportion of the xi quantity over the 

quantity ∑
n

i
ix , the x-axis shows the xi  quantities themselves, ranked by 

dimension in descending order. The distribution shows that the first 
observation (of nine) counts for the 80% of the total sum of the variable, 
and the others observations for the remaining 20%. 
Drawing on the graph the plot of the power law function, with the 
parameters estimated by the log-log function, we obtain a better fit than 
using a simple straight line interpolation3. This is shown in Fig. 2.1 by 
means of the log-log plot, while Fig. 2.2 reports the linear interpolation. 
Fig. 2 – Log-log plot(2.1)  and linear interpolation (2.2) between cumulative 
percentage and x values of Table 1  
2.1                                                                                                2.2 

 
                                        

3 The power law defines aCxy −= ; the derived log-log function is 
)log()log()log( xacy −=   

N. x 
  18.400 
2 1.747 
3 1.154 
4 582 
5 333 
6 233 
7   179 
8 145 
9   122 
Total 22.895 
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The R2 values are 0.97 and 0.75 respectively. Furthermore4 we can easily 
observe that it’s the presence of the outlier point that makes the 
distribution of the xi’s and their cumulated percentage power law. 
Erasing the observation n. 1 of table 1 the R2 values change: the log-log 
curve R2 decreases at 0.85 and linear interpolation R2 increases to 0.98 
reversing the goodness of fit hierarchy between the estimated models.   
In this example we see also that the magnitude of the outliers is 
important to suggest the power law form as a better fitting interpolation. 
That is, it seems that not only outlier observations have to exist in order 
to make the distribution power law, but also that their dimensions have 
to be much bigger than the average value of the trimmed distribution, in 
order to obtain a good fit for a power law function.  Here comes the first 
question: given a distribution of x’s , how much big have to be the 
outliers to make the distribution power law (say Pareto or Zipf) or, in 
other terms, how much extreme they are expected to be? Second 
question: established that some of such values exist, how is it possible to 
identify them? In this paper we suggest a method to answer to the 
second question and we give some empirical example of his plausibility, 
letting somebody the more heavy work of eventually proof it in a more 
general, formal and elegant way. We also let apart the answer to the first 
question. About this topic we only outline some implications of 
substantive interest.  
There is an important consequence of the above mentioned questions: if 
a change of measuring scale is implicated by a power law distribution, it 
may be due to a true qualitative change in the phenomenon. The 
presence of a significant power law fit, measured in terms of OLS 
regression, may be the signal of a qualitative change in the subjacent 
phenomenon or an indicator of discontinuity in the linking function. We 
will see a possible statistical representation of this by means of variance-
covariance analysis in a real application.   
As it is well known, one of the most relevant problems in the social 
sciences, and in sociology more than in psychology and economics, is the 
measure of objects: sometimes the same object is measured in a different 
way, sometimes different objects are measured in the same way, 
sometimes the measure that is supposed to measure one object, 
measures in fact other objects . Often different stimuli on the same topic 
yield different results on the topic: for example asking the same question 
in an open ended form or in a closed form will give totally different 
results. The observed differences in this case are not to be assigned to a 
real observed object change, but to the different stimulus that results in 
different measures. At least the correct attribution of the effect is 

                                        
4 In this context we take an empirical point of view: we are thinking about some real 
applications of the model and not about the model itself. 
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questionable. All the theory of measuring error concerns this kind of 
problems. Another, perhaps more pertinent example, concerns different 
objects measured in the same way: factor analysis produces measures of 
this type. In this case we have the same set of stimuli that, arranged in 
some way, rise to a set of measures (usually the principal components) 
related to different supposed underling latent variables referring to 
different conceptual objects. Finally, as an example of mismeasurement, 
let me quote the famous example of storks and children5: the number of 
storks living in a country is a good measure of the number of children 
born in that country. Or, more directly, storks are carrying children.  
Where both storks and children are obviously indicators of something 
else6.  Lazarsfeld defines this fact as an hidden relation. 
As in the examples mentioned above, the measure scale change 
underling a power law distribution fit may be a proxi of some latent 
phenomenon. That is a phenomenon underlaid to and in some way 
hidden by the actually measured object. 

3. Application fields: city size distributions 
 
What I would say is that in real experiments7 there is a sort of lack of 
continuity that make up a power law fit. We have already saw it in the 
above reported numerical example. We will see it again in a common 
application field of power law distribution, the City size distribution 
analysis. Let me briefly introduce the argument by quoting Gabaix and 
Ioannides8: “The evolution of city size distributions has attracted researchers over a 
long period of time. The existence of very large cities, the very wide dispersion in city 
sizes, the remarkable stability of the hierarchy between cities over decades or even 
centuries, and the role of urbanization in economic development are all particularly 

                                        
5 Cfr. Paul F. Lazarsfeld, Interpretation of statistical relations as a research operation, in Paul 
F. Lazarsfeld, M. Rosenberg,  The Language of Social Research, pp. 115-125, Glencoe, 
1955 
6 Cfr. Ferenc Moksony, Small is beautiful. The use and interpretation of R2 in social research, 
“A classic example may serve to illustrate the basic difference between substantive 
and statistical explanations. The number of births in a given locality can be estimated 
reasonably well from the number of storks in the same area; if we ran a regression 
with the number of births as the dependent and the number of storks as the 
independent variable, we would probably get a fairly large R2. But does this mean the 
number of storks explain, in a substantive sense, the level of fertility? Obviously not; 
the statistical explanatory power of this variable derives entirely from the fact that it 
is correlated with the real determinant of the number of births - namely, the degree 
of urbanisation. Rural areas have more storks and they also have a higher birth rate.” 
7 Not in mathematical models, where everything is arranged in such a way that all 
things run well and where the continuity of the function is a precondition for the 
existence of the function. 
8 X.Gabaix, Y.M.Ioannides, The Evolution of City Size Distribution, Department of 
Economics, Tufts University, 2003, p. 4 
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interesting qualitative features of urban structure worldwide. Another surprising 
regularity, Zipf’s law for cities, has itself attracted considerable interest by 
researchers…”.   
As is noted by Gabaix and Ioannides they selves9, the first problem in 
this kind of studies is the city definition: they reported as a relevant 
definition problem the alternative between city-proper data versus urban 
agglomeration data (i.e. metropolitan areas). Another problem that arise 
examining city size distribution is the choice of the population cutting 
point from which the given definition holds10.  
An experiment conducted by us on Italian cities over 100.000 inhabitants 
gives results similar to those reported by Gabaix and Ioannides with 
reference to Brakman,  Garretsen and Van Marrewijk11. The quoted 
work reports for cities-proper data a Zipf’s exponent mean of 1.13 (over 
several experiments conducted in 44 countries with a minimum of 0.8 
and a maximum of 1.5): we obtained for year 1996 a Zipf coefficient of 
1.12 with 41 cities in the sample. The R2 value is 0.99. The log-log 
equation is: 
 
log(R) = 16.56445 -1.12068*log(P)                                      obs. 41          (1) 
 
Where log(R) is the natural logaritm of the Rank of the cities plotted in 
descending order (1 is the biggest city, 41 the smallest) and –1.12068 is 
the Zipf coefficient; log(P) is the natural logarithm of the city population 
and 16.56445 the intercept value. Using natural numbers instead of 
logarithms we will have the usual power law function: 
 
 R = exp(16.56445)*P-1.12068                                                                   (2) 
 
For year 2001 we obtained : 
 
log(R) = 16.77134 -1.13975*log(P)                                     obs. 42         (3) 
 
still with an R2 value of 0.99. 
The same work conducted by Krugman12 on USA cities yields this 
equation: 
 

                                        
9 Ibidem, p. 6 
10 “The exponent ζ is sensitive to the choice of the cutoff size above which one 
selects the cities”. Where ζ is taken from the equation:   

ζS
a

SSizeP => )( given that Si is the size of city i. Ibidem, p. 5 
11 Brakman, S., H. Garretsen and C. van Marrewijk, An Introduction to Geographical 
Economics, Cambridge University Press, 2001 
12 P. Krugman, The Self-Organizing Economy, Blakwell Pubblishers, Oxford, 1996, 
quoted by Gabaix, Joannides, p. 6  
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log(R) = 10.53 -1.005*log(P)                                                                     (4) 
 
In that case the cut-off point was set at 250.000 inhabitants and the 
cities, defined as metropolitan areas, were 131. Due to these differences 
it’s hard to compare the reported results13. Anyway working with Italian 
data and changing the cut-off point it seems that the higher the cutting 
point is set, the smaller, i.e. closer to 1, the Zipf exponent will be, as we 
will see later. 
For illustrative purpose we report the graphs of the log-log plot between 
1) the logarithm of the rank of the cities ordered by population and the 
logarithm of the city population itself, 2) the logarithm of cumulative 
percentage of city population and the logarithm of the city population 
itself. For graphical purpose there are in practice no differences using the 
log of the cumulative percentage instead of the log of the rank, as the 
reader may easily see in fig. 3. Logarithm of the rank and logarithm of 
the cumulative percentage are indeed very similar: the R2 between them 
is 0.98.  
 
Fig. 3 – Log-log plot for italian cities > 100.000 inhabitants 
 
Log of the rank of the cities ordered by population                           Log of Cumulative % 

 
        Log of population                                                                                       Log of population 

 
If we take the italian population data for years 1996 and 2001, excluding 
the observation concerning Rome, the exponent of the power law 
function increase over 1.15-1.20, while the R2 remains almost constant. 
The quoted value are indicated by Gabaix and Ioannides as the upper 
Zipf exponent thresholds of a power law well describing the observed 
empirical regularities. Equations (5) and (6) show the results of log-log 
estimates in the case of reduced sample. 
 
1996: log(R) = 18.47789 -1.28467*log(P)                              Obs.  40     (5) 
2001: log(R) = 18.73980 -1.30874*log(P)                              Obs.  41     (6) 
 

                                        
13 Also the data collection years are different: 1996 and 2001 for Italy, 1991 for USA. 
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To observe changes in Zipf exponent, we may change the cutting point, 
instead of trimming the upper queue. As noted above, setting the cutting 
point may be in fact questionable. For example, if we take the Italian 
administrative definition, it’s really impossible to fix it. Simply because 
there are so many variables used in the city definition, that is impossible 
to determine common rules. Let me show you some examples. 
 
The mayor of Monte Porzio (Provincia of Pesaro Urbino, Center Italy, 
inhabitants 2.227) so describes the city acknowledgment process: 
“The city acknowledgment is given by the Republic President. The guidelines to obtain 
the city acknowledgment are different. For example, Castel Gandolfo has got it 
because it has been set to the summer residence of the pope. Another rule may be the 
inhabitants number. Monte Porzio obtained it for his noteworthy qualities: from 
Tuscolo to Barco Borghese, from the Information Centre for Young People to the 
recreation centre..”. Where Tuscolo is the name of the Monte Porzio 
surrounding area near Rome, recalling a no more existent ancient city 
receiving the city acknowledgment by no less than Ulisses’ and Circes’ 
son Telegonus14. 
In the www site of Carignano (Provincia of Torino, North Italy, 
inhabitants 8.647) we read: The city acknowledgment comes in 1683, 
given by  the Duke Vittorio Emanuele II.  
Monte S’Angelo (Provincia of Foggia, South Italy, inhabitants 13.917) 
writes: “The Municipality is entitled by the City title, acknowledged in 1401 (by 
papal bull “Rerum omnium” of Bonifacio IX). 
And Santa Maria Capua Vetere (Provincia of Caserta, South Italy, 
inhabitants 30.745) simply notes: The Municipality of Santa Maria Capua 
Vetere is entitled by the City title. 
We find in Iesolo www site (Provincia of Venezia, North Italy, 
Inhabitants 22.698): Iesolo has got the City Title in 1983 directly by the Republic  
President Sandro Pertini. 
 
Furthermore it seems that in the middle age at least in Italy the common 
rule of the city (civitas) acknowledgment was the presence of an 
Episcopal seat, but also this had to be questionable if Bartolo da 
Sassoferrato (1313-1357) should say: “Civitas vero secundum usum nostrum 
appellatur illa quae habet episcopum: antea tamen quam essent episcopi erant 
civitates. Et civitati competit potestas eligendi sibi de iure communi defensores, qui 
habeant iurisdictionem […] et quia secundum canones episcopi debent ordinari in 
dictis locis ubi sunt officiales […] ideo insurrexit consue tudo quod locum habens 

                                        
14 Telegonus killed his father, who was unknown to him, with a lance pointed with 
the spine of a trygon, or stingray, which Circe had given him. The roman mythology 
tells the story that after the death of his father, Telegonus married Ulisses’ widow 
Penelope and had a son named Italus,  wich became the king of the Oenotrians or 
Siculi, the first inhabitants of Italy. 
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episcopum sit civitas, tamen vere sine episcopo dicitur civitas, eo quod habet officiales 
praedictos, et iurisdictionem15”. 
That is because there were cities before bishops and the reason of cities 
existence has to be considered strictly a political matter, concerning the 
territory defence. As it has been noted by Marco Folin16 this was already 
said by Brunetto Latini one century before: 
«Cittade è uno raunamento di gente fatto per vivere a ragione; onde non sono detti 
cittadini d’uno medesimo comune perché siano insieme accolti dentro ad uno muro, ma 
quelli che insieme sono accolti a vivere a una ragione»17. Aren’t walls that make 
cities, but the citizens logic goals. 
 
To summarize there are sufficient reasons to conceive the above retained  
population cut-off points rather arbitrary. These thresholds have to be 
thought as conventional and liable to be weighted by historical and social 
conditions. Therefore it seems not so extravagant, at least in the Italian 
case, to set up a lower cut-off point than the one fixed before, and see 
what happens with Zipf coefficients. Choosing a cutting-point of 45.000 
inhabitants the results of the calculations are the following: 
      
1996: log(R) = 19.27710 -1.33561*log(P)                              obs. 160     (7) 
2001: log(R) = 19.49485 -1.35660*log(P)                              obs. 165     (8) 
 
The following table collects the calculated Zipf exponents varying year 
and cut-off points: 
Tab. 2 – Calculated Zipf coefficients by year and cut-off points, Italy 
 
            Cut-off points  

Year 100.000 inhab. 45.000 inhab. 
1996 -1.12068 -1.33561 
2001            -1.30874 -1.35660 

 
We may conclude that the fit of Zipf curve decreases (the exponent 
increases in absolute value) if the cut-off point is lower given the year 
and if the data collection year is more recent given the cutting point. 

                                        
15 B. da Sassoferrato, Tractatus super constitutione Qui sunt rebelles, quoted in D. 
Quaglioni, «Civitas»: appunti per una riflessione sull'idea di città nel pensiero politico dei giuristi 
medievali, in Le Ideologie della città dall’umanesimo al romanticismo, edited by V. Conti, 
Firenze, Olschki, 1993, pp. 63-64. 
16 The quoted text and the notes have been collected from M. Folin, Sui criteri di 
classificazione degli insediamenti urbani nell’Italia centro-settentrionale (secoli XIV-XVIII), to be 
published in France in Les mots de la ville, edited by B. MARIN, Paris, CNRS. 
17 B. Latini, Le livre du tresor, edited by F. J. Carmody, Berkeley 1948, p. 391 (cit. in D. 
Quaglioni, «Civilis sapientia». Dottrine giuridiche e dottrine politiche fra Medioevo ed Età 
moderna, Rimini, Maggioli, 1989, p. 135). 
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As a final remark on this topic we observe that it seems to be rather 
reductive to think about the historical conditions influencing the city size 
distribution just as economic conditions linked to industrial 
development. In the literature we may in fact find several kind of 
models18 but many of them refers to industrial assets. This approach is 
well documented by Axtell and Florida that gave the following title to a 
section of their paper: People Form Firms, Firm Clusters Are Cities19. We 
suspect that this kind of models may be adequate only in certain period 
and in well established countries (i.e. USA in the last two centuries), 
while it would be useful to think also to other social constraints. Perhaps 
Bartolo da Sassoferrato would say that there have been cities before the 
firms have been.  
From one side we may easily observe that in different countries we have 
different (big) cities: Sao Paulo is different from New York and New 
York is different from London, which in turn is different from Paris. 
They all are different from Peking. From the other side the mentioned 
cities are similar among them and different from other, smaller cities: 
Rome, Athens, Madrid, Prague and so on. No matter if a unique Zipf 
function may describe the distribution. I think that the lack of continuity 
in the distribution of city sizes, that we noted at the beginning of this 
paper, is a proxi of qualitative different phenomena. If it’s true that any 
big city doesn’t come from nothing, with a few exceptions, (Saint 
Petersburg in Russia may be one of them), it’s also true that, when the 
difference in size becomes real, it’s very hard to find regularities in one 
size level that explain the phenomena pertaining to the other size level,  
except adopting an historical and locally focused point of view. 

4. Extreme values20 detection 
 
Analysing the Italian city sizes we noted that the interception point 
between the linear interpolation of observed points (population against  
cumulative percentage distribution) and the linear interpolation of 
estimated log-log points (population against the cumulative distribution 

                                        
18 See for example the ones reviewed by Gabraix and Ioannides in the quoted paper 
“The evolution of city distribution”, p. 25 
19 Cfr. R.L. Axtell, R. Florida “Emergent Cities: a Microeconomic Explanation”, Brookings 
Institution and Carnegie Mellon University, 2000, Draft Paper, p. 2 
20 As the reader may see our approach  refers to the Extreme Value Theory just for 
the argument covered, but not for the method. Our method is quite empirical instead 
mathematic and statistics is involved as enquiry tool instead of theoretic instrument.. 
For a short presentation of the Extreme Value Theory and related references see for 
example M. Gilli, E.Kellezi, An Application of Extreme Value Theory for Measuring Risk, 
Department of Econometrics, University of Geneva and FAME, Geneva, 2003     
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estimated by the power law function) performed well as a threshold 
between normal sized cities and big cities. Given the linear system: 
 


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                                                                                        (9) 

 
where the a and b are estimated by the equations described above, the 
analytic solution for x  is:                                                                              
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The obtained x values are the threshold points. Applying this method we 
draw the graphs reported in fig.4, showing the interception points for 
some experiments on Italian city sizes. Only in the case of minimum 
variance, in which the cities in the experiment for both years have a 
number of inhabitants  comprised between 100.000 and 2.500.000, 
therefore excluding Rome which was sized 2.546.804 inhabitants in 2001, 
and comprising Milan which in the same year was 1.256.211. In this case 
in fact we may say that there are no extreme values and that the 
distribution doesn’t present heavy continuity interruptions.  
Whatever is the cut-off point we choose, 100.000 or 45.000 inhabitants, 
Rome is selected as extreme value. If we consider the entire values 
distributions, without imposing cut-off points, there are 6 cities 
considered in both years, as extreme values: Rome, Milan, Napoli, 
Torino, Palermo and Genova, which are indeed the biggest cities in Italy. 
 
Fig. 4 – Plot of observed and power law function estimated values – 1996 cities > 
45.000 inhabitants 
1996 > 45.000 inhabitants                                                                      1996 all cities 
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5. Using extreme value detection in the insurance field 
 
We used the method defined above to detect the existence of extreme 
values21, in the specified sense,  for revenue of agencies of an insurance 
company. We did it by type of insured risk and for all the risks insured in 
a particular agency. For each risk we calculated the log-log estimates, 
which are reported in the following table with the resulting R2 value (first 
three columns of table 3). By looking to the exponent estimates by the   
log-log function we first observe that the Zipf coefficients are in almost 
half of cases enough close to 1 (third, fifth, sixth, seventh and ninth 
lines), but not in the general case regarding all the risks and in the other 
cases. Secondly we observe that in each case the R2 value is less than 0.90 
and that in half of cases the simply linear estimation is better than the 
log-log one: lines 1, 4,7,8,9,12.  
If we use the threshold point as a cluster point separating the normal 
values from the extreme values as defined before and then we estimate 
two models, one for each cluster of observations (agencies), then the 
overall models R2 (column 5) increases in every case by a consistent 
quantity (column 6) and almost ever his value goes beyond 0.90. This 
way to estimate the model and the model fit conforms by logic and by 
numbers with variance and covariance analysis having the thresholds 
value as a class factor, and the revenue values as a covariate in a model 
where the cumulated percentage of revenue is the dependent variable. 
This means, as we stated before in section 1, a signal of a qualitative 
change in the subjacent phenomenon or an indicator of discontinuity in 
the linking function, if the linking function is thought as a single model 
function (running on all the observations). From a substantive point of 
view this qualitative change may imply a self adapting model, that is a 
model able to change his parameters depending on the situation in which 
it operates.  
For illustrative purpose we report in the following figures the plots of 
the observed and estimated points, with the linear interpolation 
generating the threshold points for each kind of risk and for the total 
revenue. For clarity we reports the Pareto concentration curve too. In 
table 4 we summarize the analysis results, reporting for each 
combination agency-risk a flag (value 1) indicating if the agency has 
extreme value for the annual revenue for a particular risk. The marginal 
totals give us an indication of risks that have at least one agency with 
high revenues (columns marginal), or give us an indication of the 
agencies that have at least one risks with high revenue.  

                                        
21 It’s now clear the way we intend extreme values: they are those values that more 
contribute to the goodness of fit of a power law function. Therefore nothing to do 
with Extreme Value Theory. 
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Tab. 3 – Insurance analysis coefficients summarising Table 
Insured risk (1)Log-

Log 
Intercept  

(2)Log-
Log (Zipf) 
Exponent  

(3)R2 
Of 
Log-
Log 
Plot 

(4)R2 
Of 
Linear 
Plot 

(5)R2 Of 
Anocova 
Plot 

(6) R2 
Improv 
Ment  
(5)-(4) 

Car insurance                      25.43060   -1.32165    0.80   0.96     0.98   0.02 
Legal risk   11.47104      -0.62892    0.76   0.75     0.96   0.21 
Civil generic 
risk                    

  18.61158      -0.97564    0.86   0.76     0.90   0.14 

Environmental 
risk           

   9.47329      -0.47397    0.74   0.90     0.98   0.08 

Social  and 
political risk      

   14.54892     -0.90807    0.85   0.80     0.94   0.14 

Accident risk                19.69320     -1.07360    0.86   0.63     0.89   0.16 
Stealing                    16.44612     -0.89878    0.82   0.84     0.95   0.11 
Cristals                12.08413     -0.72819    0.76   0.83     0.94   0.11 
Fire                  17.19794    -0.89515     0.79   0.88     0.97   0.09 
Health                 13.64583    -0.70135     0.59    0.48     0.83  * 0.15 
Life          21.64761    -1.20497     0.86    0.77     0.93   0.16 
Life one 
premium       

  14.15150     -0.65955    0.68    0.73     0.95   0.22 

All risks           27.46666      -1.36025     0.88    0.82     0.94   0.12 

 Fig. 5 – Health Risk  Insurance Threshold Point and Concentration Curve 
 
 
 
 
 
 
 
 
 
 
Fig. 6 – All Risks Insurance Threshold Point and Concentration Curve 
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Tab. 4 – Insurance Analysis - Extreme values summarised by Agency and Risk 
Type 

 
                                      ---------------------------------------------------------------------------------------- 
               |                 |                         FLAG VALORE ESTREMO                         | 
               |                 |---------------------------------------------------------------------| 
               |                 |TOT-|    |    |    |    |    |    |    |    |    |    |    |    |    | 
               |                 |AL  |    |    |    |    |    |    |    |    |    |    |    |    |    | 
               |                 |EXT.|RISK|RISK|RISK|RISK|RISK|RISK|RISK|RISK|RISK|RISK|RISK|RISK|ALL | 
               |                 |VAL.|O_01|O_02|O_03|O_05|O_07|O_09|O_10|O_15|O_20|O_21|O_4A|O_4B|RISK| 
               |-----------------+----+----+----+----+----+----+----+----+----+----+----+----+----+----| 
               |CODICE AGENZIA   |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 
               |-----------------|    |    |    |    |    |    |    |    |    |    |    |    |    |    | 
               |119              |   1|   1|   0|   0|   0|   0|   0|   0|   0|   0|   0|   0|   0|   0| 
               |-----------------+----+----+----+----+----+----+----+----+----+----+----+----+----+----| 
               |132              |   1|   0|   0|   0|   0|   0|   0|   0|   0|   0|   1|   0|   0|   0| 
               |-----------------+----+----+----+----+----+----+----+----+----+----+----+----+----+----| 
               |137              |   1|   0|   0|   0|   0|   0|   0|   1|   0|   0|   0|   0|   0|   0| 
               |-----------------+----+----+----+----+----+----+----+----+----+----+----+----+----+----| 
               |155              |   1|   0|   0|   0|   0|   0|   0|   0|   0|   0|   1|   0|   0|   0| 
               |-----------------+----+----+----+----+----+----+----+----+----+----+----+----+----+----| 
               |159              |   1|   0|   1|   0|   0|   0|   0|   0|   0|   0|   0|   0|   0|   0| 
               |-----------------+----+----+----+----+----+----+----+----+----+----+----+----+----+----| 
               |180              |   5|   0|   0|   1|   0|   1|   1|   0|   0|   1|   0|   0|   0|   1| 
               |-----------------+----+----+----+----+----+----+----+----+----+----+----+----+----+----| 
               |188              |   1|   0|   0|   0|   0|   0|   1|   0|   0|   0|   0|   0|   0|   0| 
               |-----------------+----+----+----+----+----+----+----+----+----+----+----+----+----+----| 
               |192              |   1|   0|   1|   0|   0|   0|   0|   0|   0|   0|   0|   0|   0|   0| 
               |-----------------+----+----+----+----+----+----+----+----+----+----+----+----+----+----| 
               |207              |   1|   1|   0|   0|   0|   0|   0|   0|   0|   0|   0|   0|   0|   0| 
               |-----------------+----+----+----+----+----+----+----+----+----+----+----+----+----+----| 
               |210              |   9|   0|   0|   1|   1|   1|   0|   1|   1|   1|   0|   1|   1|   1| 
               |-----------------+----+----+----+----+----+----+----+----+----+----+----+----+----+----| 
               |232              |   1|   0|   0|   0|   0|   0|   0|   0|   0|   0|   0|   0|   1|   0| 
               |-----------------+----+----+----+----+----+----+----+----+----+----+----+----+----+----| 
               |235              |  10|   0|   1|   1|   1|   1|   0|   1|   0|   1|   1|   1|   1|   1| 
               |-----------------+----+----+----+----+----+----+----+----+----+----+----+----+----+----| 
               |251              |   3|   0|   1|   0|   1|   0|   0|   0|   0|   0|   0|   1|   0|   0| 
               |-----------------+----+----+----+----+----+----+----+----+----+----+----+----+----+----| 
               |253              |   7|   0|   0|   0|   1|   1|   1|   1|   0|   0|   0|   1|   1|   1| 
               |-----------------+----+----+----+----+----+----+----+----+----+----+----+----+----+----| 
               |254              |   1|   0|   0|   0|   0|   0|   1|   0|   0|   0|   0|   0|   0|   0| 
               |-----------------+----+----+----+----+----+----+----+----+----+----+----+----+----+----| 
               |260              |   2|   0|   0|   0|   0|   1|   1|   0|   0|   0|   0|   0|   0|   0| 
               |-----------------+----+----+----+----+----+----+----+----+----+----+----+----+----+----| 
               |279              |   4|   1|   1|   0|   0|   0|   0|   0|   0|   0|   0|   1|   1|   0| 
               |-----------------+----+----+----+----+----+----+----+----+----+----+----+----+----+----| 
               |465              |   8|   1|   0|   1|   1|   1|   0|   1|   0|   1|   0|   1|   0|   1| 
               |-----------------+----+----+----+----+----+----+----+----+----+----+----+----+----+----| 
               |470              |   1|   0|   0|   0|   0|   0|   0|   1|   0|   0|   0|   0|   0|   0| 
               |-----------------+----+----+----+----+----+----+----+----+----+----+----+----+----+----| 
               |510              |   1|   0|   0|   1|   0|   0|   0|   0|   0|   0|   0|   0|   0|   0| 
               |-----------------+----+----+----+----+----+----+----+----+----+----+----+----+----+----| 
               |613              |   1|   0|   0|   0|   0|   1|   0|   0|   0|   0|   0|   0|   0|   0| 
               |-----------------+----+----+----+----+----+----+----+----+----+----+----+----+----+----| 
               |742              |   1|   1|   0|   0|   0|   0|   0|   0|   0|   0|   0|   0|   0|   0| 
               |-----------------+----+----+----+----+----+----+----+----+----+----+----+----+----+----| 
               |745              |   1|   1|   0|   0|   0|   0|   0|   0|   0|   0|   0|   0|   0|   0| 
               |-----------------+----+----+----+----+----+----+----+----+----+----+----+----+----+----| 
               |750              |   1|   0|   0|   0|   0|   0|   0|   0|   0|   1|   0|   0|   0|   0| 
               |-----------------+----+----+----+----+----+----+----+----+----+----+----+----+----+----| 
               |TOTAL EXTREM VAL.|  64|   6|   5|   5|   5|   7|   5|   6|   1|   5|   3|   6|   5|   5| 
               ----------------------------------------------------------------------------------------- 
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6. Final remarks 
 
In first section we showed the loss of continuity we observe in the 
experimental counterpart of power law function fit. Few observations  
may have a great influence on the model fit. We concluded that power 
law functions must be weighted with historical and local facts and their 
general validity (outside the specified condition of existence) may be 
questionable. Furthermore it seems that the existence of a power law fit 
may be used as an indicator of a qualitative change in the measure scale. 
There are some facts indeed that indicate the existence of measure 
problems.  
Second section shows, among other, that the cut-off point from which 
the cities are considered to be cities is questionable and it is responsible 
of the efficiency of the Zipf power law simulation. Once again it seems 
that local and historical variables must be taken in consideration.  
Third section outlines that there is an elementary method to separate 
observations that are responsible to the change in measuring scale: it is 
sufficient to draw straight lines on observed and on log-log estimated 
points, converted in power law form, to separate extreme values from 
“normal” values. The extreme values are defined as the values that most 
contribute to make a power law function the best fit in the model.  
In fourth section we simply apply the findings of third section for 
identifying the best performing  agencies of an insurance company. We 
obtained a table in which are listed the agencies with one extreme 
revenue value in at least one kind of risk. Obviously inverting the values 
it would be possible to identify the worse performing agencies. 
We didn’t do any formal proof of the general validity of the above 
presented threshold finding method. We will try to do it in the future. 
For now we shall only say that the presented method seems to work 
well: just like the Zipf distribution. Nobody knows why, but it works. 



 15 

Index 
 
 
1. Introduction...........................................................................................................1 

2. The problem..........................................................................................................1 

3. Application fields: city size distributions..........................................................4 

4. Extreme values detection....................................................................................9 

5. Using extreme value detection in the insurance field ..................................11 

6. Final remarks.......................................................................................................14 

 


